本文簡(jiǎn)要介紹膠體納米顆粒的各個(gè)參數(shù)對(duì)SERS性能的影響。
根據(jù)電磁場(chǎng)理論,拉曼增強(qiáng)納米顆粒的LSPR性能直接影響了SERS信號(hào)的強(qiáng)弱、重復(fù)性和穩(wěn)定性,從而決定了SERS技術(shù)有沒有用,可不可靠。而納米顆粒的LSPR性能與其尺寸、形貌、距離和hot spot等四個(gè)方面息息相關(guān)。
1. 尺寸的影響
不同尺寸的納米顆粒激發(fā)出不同強(qiáng)度的LSPR,從而表現(xiàn)出不同的SERS性能。雖然尺寸和增強(qiáng)因子(EF)之間具體的函數(shù)關(guān)系還沒有完全建立,但基本的趨勢(shì)已經(jīng)逐漸清晰。Van Duyne等結(jié)合理論和實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)納米顆粒吸附待測(cè)物質(zhì)之后,其LSPR 最大值處于激發(fā)光和散射光之間時(shí),得到的拉曼增強(qiáng)因子值最大。Tian和Xia課題組都發(fā)現(xiàn)通過實(shí)驗(yàn)證明,隨著Ag 納米顆粒的尺寸逐漸變大,SERS信號(hào)逐漸增強(qiáng)。因此,在特定的激發(fā)光下,選擇合適尺寸的納米顆粒有利于SERS信號(hào)的增強(qiáng)。
2. 形貌的影響
對(duì)于不同形貌的納米顆粒而言,其LSPR性能是不一樣的,從而導(dǎo)致了其SERS性能的差別。對(duì)于同一種形貌的納米顆粒而言,除了球形在各個(gè)位點(diǎn)上LSPR強(qiáng)度均勻,其他如棒、多面體、片等形貌不同位點(diǎn)的LSPR強(qiáng)度都不盡相同。當(dāng)入射光從不同角度激發(fā)時(shí),同一種材料會(huì)表現(xiàn)出不一樣的性質(zhì),影響SERS信號(hào)的重復(fù)性。Xia等通過對(duì)比Ag立方塊和截角立方塊在不同激光方向的SERS性能發(fā)現(xiàn),立方塊在不同的方向表現(xiàn)的SERS活性各不相同,而截角立方塊由于更接近球形,各個(gè)方向得到的SERS信號(hào)幾乎一樣。因此,球形納米顆粒理論上應(yīng)該具有最好的信號(hào)重復(fù)性。
3. 距離的影響
當(dāng)距離活性拉曼增強(qiáng)納米顆粒表面越遠(yuǎn),電磁場(chǎng)強(qiáng)度逐漸下降,SERS信號(hào)強(qiáng)度也逐漸下降。比較經(jīng)典的證明有Van Duyne課題組[利用不同Al2O3厚度的AgFON@Al2O3和田中群課題組[利用SHINERS納米顆粒在隔絕化學(xué)增強(qiáng)的情況下得到的實(shí)驗(yàn)結(jié)果。因此,為了得到最佳的強(qiáng)度,應(yīng)盡量保證待測(cè)物質(zhì)處于活性納米顆粒的表面附近。
4. Hot spot的影響
納米結(jié)構(gòu)之間形成的微小縫隙處會(huì)產(chǎn)生巨大的電磁場(chǎng),其增強(qiáng)因子可以達(dá)到1015,這種微小的縫隙即為hot spot。Hot spot對(duì)于SERS強(qiáng)度的高低起到了決定性的作用,越有利于形成hot spot的組裝方式越容易得到高強(qiáng)度的SERS信號(hào)。Hot spot的形成包括自然堆積和有序控制兩種方式,其中比較經(jīng)典的有利用小分子作為間隔制備的核殼結(jié)構(gòu)納米顆粒和特定個(gè)數(shù)納米顆粒形成聚集體的方法,對(duì)于SERS活性的提高起到了很大的幫助。
圖1-6 常見的3種hot spot示意圖(a,緊密堆積的納米顆粒之間;b,具有尖銳形貌納米顆粒的頂端;c,待測(cè)分子與納米顆粒表面之間)
總之,納米顆粒的尺寸、形貌、相對(duì)待測(cè)物質(zhì)的距離和hot spot的形成都對(duì)SERS性能影響重大。到底拉曼增強(qiáng)納米顆粒經(jīng)歷了一個(gè)怎樣的發(fā)展歷程?哪些方面發(fā)展得不夠完善,從而阻礙了SERS技術(shù)的市場(chǎng)化?我們將從下一節(jié)中得到啟示。
參考文獻(xiàn):
1. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107, 668-677.
2. Haynes, C. L.; Van Duyne, R. P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy[J]. The Journal of Physical Chemistry B, 2003, 107, 7426-7433.
3. Uzayisenga, V.; Lin, X.-D.; Li, L.-M.; Anema, J. R.; Yang, Z.-L.; Huang, Y.-F.; Lin, H.-X.; Li, S.-B.; Li, J.-F.; Tian, Z.-Q. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir, 2012, 28, 9140-9146.
4. Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.-P.; Xia, Y. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30?200 nm and comparison of their optical properties[J]. Journal of the American Chemical Society, 2010, 132, 11372-11378.
5. Zhang, J.; Li, X.; Sun, X.; Li, Y. Surface enhanced Raman scattering effects of silver colloids with different shapes[J]. The Journal of Physical Chemistry B, 2005, 109, 12544-12548.
6. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. Journal of the American Chemical Society, 2009, 132, 268-274.
7. McLellan, J. M.; Li, Z.-Y.; Siekkinen, A. R.; Xia, Y. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano letters, 2007, 7, 1013-1017.
8. Dieringer, J. A.; McFarland, A. D.; Shah, N. C.; Stuart, D. A.; Whitney, A. V.; Yonzon, C. R.; Young, M. A.; Zhang, X.; Van Duyne, R. P. Introductory LectureSurface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday discussions, 2006, 132 , 9-26.
9. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Ren, B. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464, 392-395.
10. Tian, Z.-Q.; Yang, Z.-L.; Ren, B.; Li, J.-F.; Zhang, Y.; Lin, X.-F.; Hu, J.-W.; Wu, D.-Y. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape[J]. Faraday discussions, 2006, 132, 159-170.
11. Kovacs, G.; Loutfy, R.; Vincett, P.; Jennings, C.; Aroca, R. Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: evidence for the electromagnetic mechanism. Langmuir, 1986, 2, 689-694.
12. Maher, R. C. SERS hot spots. In: Raman Spectroscopy for Nanomaterials Characterizations. Germany: Springer, 2012.
13. Lim, D.-K.; Jeon, K.-S.; Hwang, J.-H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J.-M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nature nanotechnology, 2011, 6, 452-460.
14. Feng, Y.; Wang, Y.; Wang, H.; Chen, T.; Tay, Y. Y.; Yao, L.; Yan, Q.; Li, S.; Chen, H. Engineering “Hot” Nanoparticles for Surface-Enhanced Raman Scattering by Embedding Reporter Molecules in Metal Layers. Small, 2012, 8, 246-251.
15. Wustholz, K. L.; Henry, A.-I.; McMahon, J. M.; Freeman, R. G.; Valley, N.; Piotti, M. E.; Natan, M. J.; Schatz, G. C.; Duyne, R. P. V. Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 10903-10910.